
189

A Structured Methodology for Pattern based Adaptive

Scheduling in Embedded Control

SUMANA GHOSH, SOURADEEP DUTTA, SOUMYAJIT DEY, and PALLAB DASGUPTA,

Indian Institute of Technology Kharagpur

Software implementation of multiple embedded control loops often share compute resources. The control
performance of such implementations have been shown to improve if the sharing of bandwidth between
control loops can be dynamically regulated in response to input disturbances. In the absence of a structured
methodology for planning such measures, the scheduler may spend too much time in deciding the optimal
scheduling pattern. Our work leverages well known results in the domain of network control systems and
applies them in the context of bandwidth sharing among controllers. We provide techniques that may be used
a priori for computing co-schedulable execution patterns for a given set of control loops such that stability is
guaranteed under all possible disturbance scenarios. Additionally, the design of the control loops optimize the
average case control performance by adaptive sharing of bandwidth under time varying input disturbances.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Net-

works → Network reliability;

Additional Key Words and Phrases: Embedded control, adaptive scheduling, schedulability analysis, control
performance

ACM Reference format:

Sumana Ghosh, Souradeep Dutta, Soumyajit Dey, and Pallab Dasgupta. 2017. A Structured Methodology for
Pattern based Adaptive Scheduling in Embedded Control. ACM Trans. Embed. Comput. Syst. 16, 5s, Article
189 (September 2017), 22 pages.
https://doi.org/10.1145/3126514

1 INTRODUCTION

The rapid growth in the number of features in a modern automobile has led the industry to seek
a migration from a federated architecture, where each control task has a dedicated Electronic
Control Unit (ECU), to an integrated architecture, where ECUs are shared between multiple control
components. This requirement has opened up interesting questions about how well can we share
ECUs among control components without affecting the control performance of each component in
an adverse way.

The traditional solution to this problem, which is widely studied in the literature [4, 5, 7, 22],
assumes that each control task executes periodically with pre-defined arrival times and deadlines.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue.
Authors’ addresses: S. Ghosh, S. Dutta, S. Dey, and P. Dasgupta, Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur 721302, India; emails: sumanaghosh@cse.iitkgp.ernet.in,
jusouradeep@gmail.com, {soumya, pallab}@cse.iitkgp.ernet.in.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 1539-9087/2017/09-ART189 $15.00
https://doi.org/10.1145/3126514

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

https://doi.org/10.1145/3126514
mailto:permissions@acm.org
https://doi.org/10.1145/3126514

189:2 S. Ghosh et al.

The periodicity is determined from control theoretic analysis and reflects the interval at which the
controller needs to inspect the system under control (called the plant) in order to guarantee the
desired control performance. Given the periodicity and deadlines of each control task mapped to
a common ECU, a schedulability analysis is performed to determine the scheduling strategy that
guarantees the completion of all control tasks are completed on time.

Research performed in [7, 15, 22] shows that controllers mapped to the same ECU can trade-off
each other’s bandwidth in response to the input disturbances to achieve a better overall control
performance. In the new paradigm, a controller may increase the rate at which it samples the plant
when it senses a disturbance above normal margins, and return to the original sampling rate only
after it has rejected the disturbance. In order to accommodate the higher sampling rate, the other
controllers sharing the same ECU temporarily work with a lower sampling rate – sometimes at the
expense of marginal degradation in their control performance. It has been shown that an objective
function representing a combined control performance criterion can be optimized by dynamically
regulating the sampling rates of the controllers [4, 7].

Typically for accommodating the non-idealities of the platform, the sampling rates are chosen
with sufficient margin, so that failure to complete the loop in one or more sampling windows may
not degrade the control performance in many state of the plant [3]. Particularly under marginal
disturbances, the controller can often skip one or more loop executions and allow another con-
troller to utilize the residual bandwidth. We formalize this aspect to develop a method for adaptive
bandwidth sharing among controllers.

At the heart of our approach is a theory which defines the patterns of skipping loop execu-
tions that do not compromise the stability guarantee. For multiple controllers sharing an ECU, we
present a design methodology for adaptive sharing of bandwidth between controllers in which the
pattern of regulation is guided by the choice of compatible loop execution patterns, where compat-

ibility is with respect to schedulability. Adaptive control and related scheduling techniques have
also been recommended in upcoming automotive standards like Adaptive AUTOSAR [11] which
supports runtime configuration management and dynamic scheduling of embedded software. Our
theory can be leveraged in various ways for designing software implementable adaptive control
strategies. The approach followed in this paper is as follows:

(1) We consider the design of a set of n plant-control loops.
(2) For each plant we are given a disturbance threshold. Disturbances below this threshold are

called nominal disturbances and those above are called high disturbances.
(3) For each plant, separate control performance requirements are formally specified for high

and nominal disturbances, where the control performance guarantee for high disturbance
is typically more stringent than the nominal one (for example, a sharper damping curve).
We refer to these modes as the nominal mode and the extremal mode. For nominal distur-
bance levels we have an additional mode of the controller called the marginal mode, which
has a relaxed control performance requirement. Intuitively, When all the controllers are
experiencing nominal disturbances, they will stay in their nominal modes, which are cho-
sen in a way that the overall control cost is minimized.

When one or more controllers experience high disturbances, we switch them to their
respective extremal modes, so that they can eliminate such disturbances quickly. In some
cases this is schedulable without disturbing the other controllers from their nominal mode
of operation. In the other cases we relegate some of the controllers to their marginal modes
and use the residual bandwidth to elevate the controllers experiencing high disturbances
to their extremal modes.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:3

(4) We present novel synthesis algorithms which compute the set of co-schedulable loop ex-
ecution patterns that guarantee the specified control requirements for the various modes
along with stable switching sequences which provide admissible ways for effecting safe
simultaneous mode switching for all control loops.

(5) Further, we use additional cost metrics to choose between the admissible loop execution
patterns so as to optimize the overall control performance.

Essentially our goal is to develop an offline approach for choosing the loop execution patterns
for the extremal, nominal and marginal modes of the controllers, and design an adaptive control
strategy that orchestrates the switching between such pre-defined patterns at runtime in response
to disturbances. We report gains in control performance in all experiments as compared to the
non-adaptive control scheduling. Interesting trends are also reported and discussed in the paper.

The paper is organized as follows. Section 2 formalizes the notion of recurrent loop execution
patterns. Section 3 develops the platform based formalism for adaptive sharing of ECU bandwidth
among controllers. Section 4 describes the algorithmic framework. Section 5 presents the illus-
tration of the key concepts together with the experimental evidence of the gain in control per-
formance with the proposed approach. Section 6 discusses related work in this field. Section 7
summarizes the conclusions from the paper.

2 FORMALIZING LOOP EXECUTION PATTERNS

Let P = (Ap ,Bp ,Cp) be a linear, discrete time invariant plant defined as follows.

xp[t + 1] = Apxp[t] + Bpu[t]

y[t] = Cpxp[t]

Following usual notations, the plant state at the t-th time instant is given by the vector xp[t]. Simi-
larly,y[t] defines the output andu[t] defines the control input at the t-th time instant. The matrices
Ap ,Bp andCp describe the transition matrix, the input map, and the output map for the plant model
respectively. A stabilizing controller Γ = (Ac ,Bc ,Cc) for P senses the plant output y and decides
the control action by adjusting the control variables inu. In usual convention, the feedback control
law is represented as a linear time invariant (LTI) system of the following form [1]:

xc [t + 1] = Acxc [t] + Bcy[t]

u[t] = Ccxc [t]

Here, xc [t] represents the state of the controller, and Ac ,Bc andCc are the state transition matrix,
the input map, and the output map for Γ respectively. With x = [x ′p ,x

′
c]′, the dynamics of the

resulting closed loop 〈P , Γ〉 is as follows:

x[t + 1] =

[
Ap BpCc

BcCp Ac

]
x[t] (1)

IfA1 represents the closed loop dynamic matrix for the normal notion of periodic loop executions,
then we have the system dynamics at each sampling time instant t as : x[t + 1] = A1x[t].

Suppose the loop execution is skipped in some sampling period [t , t + 1]. This means that be-
tween t and t + 1, the control variables will not change and consequently the control input to the
plant will not change. Formally we have, xc [t + 1] = xc [t] and u[t + 1] = Ccxc [t + 1] = Ccxc [t].
The restriction, xc [t + 1] = xc [t], replaces the transition matrix (Ac) and the input map (Bc) of the
controller by the identity matrix and null matrix respectively, that is, Ac = Ic and Bc = O . The sit-
uation where the control actuation values remain constant but the plant continues to evolve can

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:4 S. Ghosh et al.

be viewed as application of the closed loop dynamic matrix:

A0 =

[
Ap BpCc

O Ic

]
which is derived from A1 by substituting Ac = Ic and Bc = O .

A switching signal for the loop is a sequence defined over {A1,A0}. We consider such infinite
switching signal for control loops to be specified as infinitely repeating finite length (control) loop

execution patterns. Formally, given a control loop 〈Pi , Γi 〉, let, σ be a switching signal of the form,
σ : N �→ {A0,i ,A1,i }, that is, σ (t) = A1,i if the control loop is executed at sampling window [t , t + 1]
and σ (t) = A0,i if it is skipped. A loop execution pattern is a finite l-length string s ∈ {A0,i ,A1,i }∗
such that σ = sω . For a given loop execution pattern s with the associated infinite length switching
signal σ , the closed loop represents a switched system as defined as:

x[t + 1] = σ (t)x[t]

In general, when the loop index (i) is inconsequential, or clear from the context, we shall abstract it
out for simplicity and also express loop execution patterns as members of {0, 1}∗. For example, ac-
cording to the loop execution pattern s = 120210, we have, ∀t ∈ N, x[t + 6] = A0A1A0A0A1A1x[t]
such that the associated infinite length switching signal is given by σ = (A0A1A0A0A1A1)ω .

We develop additional methodology for switching between such loop execution patterns so as
to adaptively improve the quality of control for a set of controllers sharing an ECU. Moreover, as
opposed to controllers that switch between different sampling rates, we use a single sampling rate
in all modes of operation of the system, but variable loop execution patterns. This aspect separates
our work from existing body of literatures [5–7, 22] that studies multi-rate controllers.

3 PATTERN BASED ADAPTIVE SCHEDULING

The goal of improving control performance through adaptive bandwidth sharing may be attempted
in various ways. In our present line of research, driven by practical considerations, we study a
structured mechanism for adaptive sharing of bandwidth in the face of input disturbances. Specif-
ically, we begin by defining for each plant, what constitutes a high level of disturbance. Intuitively,
our goal is to achieve a sharper damping curve for high disturbances, and for that we prepare the
controller to give the plant more attention (if needed) by elevating it to a different loop execution
pattern. In general our methodology could be extended to multiple discrete disturbance thresh-
olds, but at this stage we have experimented with only two levels of disturbances for each plant,
namely high and nominal, and therefore we confine our discussion to only two disturbance levels
per plant. A controller will therefore operate under three different modes, each represented by a
set of loop execution patterns.

(1) Nominal Mode: A controller operates in this mode by default.
(2) Extremal Mode: A controller moves to this mode when the respective plant experiences

high disturbance.
(3) Marginal Mode: A controller moves to this mode when it gives up a fraction of its ECU

bandwidth to allow some other controller(s) to move to their extremal modes. This mode is
allowed for a controller only at times when its plant is not experiencing high disturbance.

In the proposed methodology, the modes are formally characterized in terms of performance
requirement captured in terms of (l , ϵ)-exponential stability [24].

Definition 3.1 (Exponential Stability Criterion). A dynamical system (as represented by Equa-

tion (1)) is said to be (l , ϵ)-exponentially stable, with l ∈ N and ϵ ∈ (0, 1], if
| |x (t+l) | |
| |x (t) | | < ϵ for every

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:5

t ∈ N and x (t) ∈ Rn , where | |.| | represents the euclidean norm (2-norm). This implies that the error

is reduced by at least a factor of ϵ in every l sampling periods.

Given the settling time criteria for different modes and the input disturbance levels, we compute
the corresponding (l , ϵ)-exponential stability constraints. In summary, the inputs to our problem
are as follows. A set of n control loops where for each plant, Pi , we are given,

(1) 〈Γi ,hi ,A1,i ,A0,i 〉, where the controller Γi is designed using a sampling period hi and
A1,i /A0,i are the closed system dynamics in the sampling window where the control loop
is executed/skipped.

(2) Worst case execution time (WCET) value wi for the loop.
(3) A disturbance threshold, ηi .
(4) The exponential damping requirement in the nominal mode represented by the pair,

(li , ϵnom,i) which is derived from the specified desirable settling time.
(5) The exponential damping requirement in the extremal mode represented by the pair,

(li , ϵext,i) which is derived from the specified desirable settling time.
(6) The exponential damping requirement in the marginal mode represented by the pair,

(li , ϵmrд,i) which is derived from the specified marginal settling time.

In this offline design phase, our goal is to design an ECU-wide strategy for regulating the loop
execution patterns of the controllers so as to minimize the control cost, subject to the following
constraints:

(1) The patterns are chosen on the basis of the the combined control cost and are subject to
the settling time constraints.

(2) Controllers that experience high disturbance must be moved to their extremal modes.
(3) Any controller that does not experience high disturbance must remain in its nominal mode

unless compelled to move to its marginal mode to release some of its ECU bandwidth.

The global configurations of the system of controllers sharing an ECU are as follows:

(1) The settled configuration. In this configuration, none of the plants are experiencing high
disturbance, and therefore, all controllers are in their nominal modes of operation.

(2) The perturbed configurations. Given the set {P1, . . . , Pn } of plants, at any point of time
there can be no ≤ n number of plants experiencing high disturbance. A configuration in
which a non-empty subset M ⊆ {P1, . . . , Pn } of plants are experiencing high disturbance is
called a perturbed configuration M . For any plant Pi ∈ M , the stabilizing controller should
operate in extremal mode.

It may so happen that some configurations are not schedulable, that is, even after moving the
remaining controllers to their marginal loop execution patterns we do not have sufficient ECU
bandwidth to elevate the controllers experiencing high disturbance to their extremal loop execu-
tion patterns. Our analysis will find such infeasible configurations, and the policy of the system
will be to remain in its previous configuration in such scenarios.

4 THE ALGORITHMIC FRAMEWORK

In this section, we discuss the algorithmic aspects involved in the different offline computational
steps of our adaptive scheduling strategy.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:6 S. Ghosh et al.

4.1 Obtaining (l, ϵ)-criterion from Settling Time

As evident from earlier discussions, the operational modes for each controller are characterized
using (l , ϵ) stability criteria. We derive the (l , ϵ)-pairs for various disturbance levels based on the
settling time constraints. A settling time criterion requires the controller to reject all disturbances
of level up to d within a time ST . Let the desired operating region of plant P be given by the sphere√
xT · x ≤ χ for some system norm χ . The perturbed system satisfies the settling time criteria

within the sphere given by
√
xT · x ≤ χ + d . Given these as inputs, we compute,

(1) the number of sampling periods L = ST
h
�, needed to settle within ST (h is sampling period

of P).
(2) the damping factor f =

χ
χ+d

.

The pair (L, f) is an exponential stability specification for P for the given disturbance level and set-
tling time requirement. However, for a given (L, f) stability criterion, one should always consider

a stricter criterion (L
m
, f

1
m), for somem > 1, with a smaller number of sampling periods such that

the satisfaction of (L
m
, f

1
m) naturally implies the satisfaction of (L, f). We set l = L

m
and ϵ = f

1
m

and consider this stricter (l , ϵ)-exponential criterion as our performance requirement. We derive
the (l , ϵ)-pairs for the modes of the i-th control loop, from the following inputs:

(1) The desirable settling time, STdsr,i , and the marginal settling time, STmrд,i , where STmrд,i ≥
STdsr,i .

(2) The disturbance threshold, ηi < χi + dmax,i to switch to the extremal mode, where dmax,i

is a design parameter representing the maximum level of disturbance for which the desir-
able settling time is guaranteed.

In our design we choose the (l , ϵ)-pairs for guaranteeing the respective settling times in the
following ranges of disturbance,

(1) (χi ,ηi]: under which we guarantee desirable settling time for the nominal mode, and mar-
ginal settling time for the marginal mode.

(2) (ηi , χi + dmax,i]: under which desirable settling time is guaranteed for the extremal mode.

Thus, for a plant Pi ,

(1) a controller in nominal mode and extremal mode satisfy (li , ϵnom,i) and (li , ϵext,i) respec-
tively while ensuring that the settling time < STdsr,i for the disturbance levels within the
respective ranges (χi ,ηi] and (ηi , χi + dmax,i].

(2) in marginal mode the controller satisfies (li , ϵmrд,i) stability criterion and ensures settling
time < STmrд,i for the disturbances below ηi .

From the settling time criteria, the computation of the (l , ϵ)-pairs for the i-th loop are as follows.
First we compute L1 = STdsr,i/hi � and L2 = STmrд,i/hi �. Next we choose m1 and m2, in such a

way so that li = L1
m1
� = L2

m2
�. Then we set ϵext,i = (

χi

χi+dmax,i
)

1
m1 , ϵnom,i = (

χi

ηi
)

1
m1 and, ϵmrд,i =

(
χi

ηi
)

1
m2 . It may also be noted that ϵmrд,i ≥ ϵnom,i ≥ ϵext,i since smaller settling times and higher

disturbance levels both necessitate higher damping factors (that is, smaller values of ϵ).

4.2 Stability under Loop Skipping

Given a (l , ϵ) performance criterion for any mode (nominal, extremal or marginal) of a system, we
can compute the corresponding minimum decay rate (α) to be satisfied at that mode. Following

the standard exponential stability definition [14], we set α = log 1/ϵ

l
. The loop skipping behavior

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:7

of loop execution patterns provide a well defined drop rate for the corresponding switching sig-
nal. The stability of periodic control loops in the presence of drops has been studied in [3, 25]
which provides the following sufficient condition on the rate of loop skipping while guaranteeing
exponential stability in terms of a minimum decay rate.

Theorem 4.1. [25] For a control loop with the associated closed loop matrix A1 being Schur sta-

ble and r being the rate of successful execution of the loop over an infinite horizon, if there exists a

Lyapunov function V (x (t)) = x ′(t)Px (t) and scalars α0,α1 such that

α r
1α

1−r
0 > α (2)

AT
1 PA1 ≤ α−2

1 P (3)

AT
0 PA0 ≤ α−2

0 P (4)

then the system remains exponentially stable with a decay rate greater than α .

The bound on the execution rate r can be found if the following results hold.

(1) if A0 is marginally stable, then the closed loop is exponentially stable for 0 < r ≤ 1.

(2) if A0 is unstable, the closed loop is exponentially stable for
2 loge (α)+loge (γ0)
loge (γ0)−loge (γ1) < r ≤ 1, where

γ1 = α−2
1 = λ2

max (A1), γ0 = α−2
0 = λ2

max (A0), γ1 < 1, γ0 > γ1 and λmax (Aj) is the maxi-
mum eigenvalue of Aj , j = 0, 1.

Given a set of n control loops, the above theorem provides the maximum possible rate of loop
skipping 〈(1 − r1), . . . , (1 − rn)〉which may be allowed in each control loop while respecting some
associated stability constraint. As an example, for any loop execution pattern of length l = 50
and for r = 0.9, the above conditions imply that in any 50 consecutive samples, the controller is
allowed to miss at most 50 × (1 − 0.9) = 5 computation to remain exponential stable. For a given
mode (nominal, extremal or marginal), once we have computed the required minimum decay rate
α as discussed earlier, we can compute the corresponding minimum successful execution rate rmin

at that mode by solving the above mentioned Linear Matrix Inequalities (Equations (2)–(4)) using
α as deduced from the given (l , ϵ) criteria, and α1, α0 as deduced fromA1,A0 respectively. We will
continue designating this computation using a procedure, Compute_Min_rates(A0,A1, (l , ϵ)).

4.3 Control Cost of a Loop Execution Pattern

For patterns satisfying a given decay constraint, we employ the notion of linear quadratic cost
given by the following cost function as a measure of Quality of Control (QoC).

J =

∫ ∞

0

(
xT [t]Qx[t] + uT [t]Ru[t]

)
dt

In the cost function,Q and R are quadratic weight matrices representing the relative importance of
the deviation of state valuation x[t] and control effortu[t] respectively. Standard Linear Quadratic
Regulator (LQR) based control design minimizes J providing a least cost optimal controller subject
to perfectly periodic execution. However, in our case, we consider recurrent patterns instead of
perfectly periodic execution. Though the controller designed is optimal for infinite horizon, for
control execution with drops, the QoC becomes dependent on the relative locations of loop skip-
ping [20]. The cost of different loop execution patterns satisfying the same rate/decay constraint
may potentially be different. Among loop execution patterns satifying the same rate constraint,
it can be shown following [20] that the pattern with most uniform drop exhibits the best QoC in
terms of LQR cost. We use the above observation as a guiding principle inside our algorithm for
schedulable pattern synthesis. The definition of uniformity follows uniform distribution of 0s in

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:8 S. Ghosh et al.

Fig. 1. Stable Transition and Bridges.

binary words known as upper mechanical word [8]. Formally, a binary word is upper mechanical
iff there exists 0 ≤ β ≤ 1 such that thenth letter of the word is given by, (n + 1).β� − n.β�,∀n ≥ 0
where β represents the fraction of 1-s in the sequence. Hence, among l length loop execution pat-
terns with execution rate r , the optimal pattern sopt is given by⌈

(n + 1).
q

l

⌉
−
⌈
n.
q

l

⌉
, ∀n ≥ 0, where q = r × l�

4.4 Stable Transition between Patterns

It is important to guarantee stability when a controller switches between two loop execution pat-
terns. For this purpose, we introduce the notion of bridges between recurrent loop execution pat-
terns. Intuitively, a bridge from one loop execution pattern sa to another pattern sb is a transition
from sa[i] to sb [j], such that every l-length subsequence containing this transition must respect
the execution rates obtained from the (l , ϵ)-stability criterion of sa or sb . The following example
illustrates the notion.

Example 4.2. We consider two loop execution patterns, sa[0 · · · 6] = 1111110 and sb [0 · · · 6] =
1111010, which follow the execution rates ra = 0.85 and rb = 0.71 obtained by (7, 0.25) and (7, 0.4)
exponential stability criteria respectively. The transition from sa[1] to sb [3] is not a bridge because
the intermediate pattern s[0..6] = 0111010 (marked by red color in Figure 1) obtained by appending
the substring starting from sa[6], ending at sa[1] with the substring starting from sb [3], ending
at sb [6], has execution rate of 0.57 which is much less than ra and rb . On the other hand, the
transition from sa[3] to sb [3] is a bridge from sa to sb since all 7-length patterns using this bridge
have execution rates atleast ofmin(ra , rb).

Definition 4.3 (Bridge Between Loop Execution Patterns). Given a recurrent loop execution pat-
tern sa[0..l − 1] satisfying the successful execution rate ra , and a recurrent loop execution pattern
sb [0..l − 1] satisfying the successful execution rate rb , the pair (sa[i], sb [j]) is a bridge from sa to
sb , iff every l-length string, s , obtained by appending a substring from sω

a ending at sa[i] with a
substring from sω

b
starting at sb [j] satisfy the ratemin(ra , rb).

For multiple controllers sharing the same ECU, the notion of loop execution patterns is lifted to
compatible combinations of loop execution patterns, and the notion of bridges is lifted to compat-
ible combination of bridges.

Definition 4.4 (Compatible Loop Execution Patterns). Given n control loops, a compatible combi-
nation of loop execution patterns is an ordered set of patterns s̄ � {s1, . . . , sn } which are schedu-
lable in a shared ECU.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:9

Schedulability analysis for patterns is presented in next section. For each configuration of the
controllers, we require a compatible set of loop execution patterns. For moving from one configu-
ration to another, we require bridges between the configurations.

Definition 4.5 (Bridge Between Global Configurations). Let s̄1 and s̄2 be the set of compatible loop
execution patterns corresponding to two controller configurations. A bridge from one configu-
ration of the controllers to another is an ordered set of bridges between the i-th loop execution
pattern in s̄1 and the i-th loop execution pattern in s̄2, 1 ≤ i ≤ n.

4.5 Pattern Based Scheduler Automaton

This section outlines the steps in constructing the scheduler automaton that orchestrates the
switching of the controllers from one set of loop execution patterns to another in response to
disturbances in one or more controllers. Each state of the automaton represents a selected combi-
nation of loop execution patterns for n controllers in a specific configuration of the system (that is,
corresponding to a disturbance scenario). A transition of the automaton from one state to another
is defined by the bridges between two combinations of n loop execution patterns for these two
states. In general there may be more than one bridge between two combinations of loop execution
patterns, hence a transition of the scheduler automaton is represented by a set of bridges. The
typical operation of the adaptive scheduler is as follows:

(1) It executes the combination of loop execution patterns corresponding to the settled con-
figuration by default.

(2) When a subset of the plants start experiencing high disturbance, the scheduler selects the
next available bridge from the settled configuration to the combination of loop execution
patterns corresponding to the new perturbed configuration.

(3) When these plants return to nominal disturbance levels, the scheduler selects the next
available bridge to return to the settled configuration.

In general, a different combination of plants may start experiencing high disturbance before the
controller has returned to the settled configuration from its previous perturbed configuration. This
is particularly significant when a plant which experiences high disturbance in the new perturbed
scenario was operating in marginal mode in the previous scenario. Currently our scheduling strat-
egy handles such scenarios in the following way. The scheduler uses the next available bridge to
return to the settled configuration (temporarily), and then uses the next available bridge to the con-
figuration which corresponds to the new disturbance scenario. By moving to the new perturbed
configuration, it attempts to improve the performance under the changed disturbance scenario.

We shall now elaborate the design steps further. To begin with, for each controller Γi corre-
sponding to its three operational modes, we compute the exponential stability criterion (li , ϵnom,i),
(li , ϵext,i) and (li , ϵmrд,i), where ∀i, ϵmrд,i ≥ ϵnom,i ≥ ϵext,i from the given settling time criteria as
outlined in Section 4.1. Next we calculate the following sets of minimum successful execution rates
for the patterns in extremal mode, nominal mode and marginal mode respectively to guarantee the
exponential stability as described in Section 4.2.

rmin
ext,i = Compute_Min_rates(A0,i, A1,i, (li, ϵext,i))

rmin
nom,i = Compute_Min_rates(A0,i, A1,i, (li, ϵnom,i))

rmin
mrд,i = Compute_Min_rates(A0,i, A1,i, (li, ϵmrg,i))

For a configuration M , we have a minimum execution rate vector r
min

M
having the component cho-

sen from above rates for the loops in accordance with their mode of operation in M . For example,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:10 S. Ghosh et al.

in settled configuration, we have r
min

stl
=[rmin

nom,1, . . . , r
min
nom,n]. For any perturbed configuration Mi ⊆

{P1, . . . , Pn }, we have r
min

Mi
[j] = rmin

ext, j if Pj ∈ Mi and r
min

Mi
[j] = rmin

mrд, j otherwise.
The above rates as computed for a configuration provide the allowable lower bounds on loop

executions. We also maintain the maximum possible execution rate for each control loop satisfying
its respective lower bound. This however, is constrained by

(1) co-schedulability of all loops given a choice of individual rates under a limited ECU
bandwidth.

(2) QoC of the pattern selected for each loop depending on its uniformity.

An algorithm addressing this computational problem of choosing loop execution patterns for a
given configuration without compromising the overall QoC is presented in Algorithm 1.

ALGORITHM 1: Find_Schedulable_Patterns ()

Input: Minimum execution rates of a configuration M : r min
M

=[r min
1 , . . . , r min

n], Loop priorities:

P = { p1, . . . , pn }, % bandwidth available: BW , Sampling period: H = {h1, . . . , hn }, WCET:
W = {w1, . . . , wn }

Output: Schedulable combination of loop execution pattern for M : ξM

1 r max = [1, 1, . . . , 1];

2 while r max ≥ r min
M

do

3 Compute 〈δ1, . . . , δn 〉 such that δ1
r min

1
: . . . : δn

r min
n

= p1 : . . . : pn and

BW − 2ε ≤ ∑n
i=1 (r min

i + δi) wi
hi
≤ BW − ε ; // ∀i, find the increment δi over r min

i

4 r max =[(r min
1 + δ1), . . . , (r min

n + δn)];

5 Find sopt = {s1, s2, . . . , sn }, where si is an uniform pattern with βi = li× r max [i]�/li , ∀i ∈ {1, . . . , n };
6 if sopt is EDF_Schedulable then

7 ξM = sopt ; // Uniform patterns are schedulable

8 break;

9 end

// Search For Schedulable Combination of Patterns

10 else

11 s̄=Find_Best_Match(W , H , r max);

12 if s̄ � Λ then

13 ξM = s̄ ; // Schedulable combinations of patterns are found

14 break;

15 end

16 else BW = BW − ε ; // Relax the bandwidth utilization

17 end

18 end

// Pattern is not found for Settled Configuration

19 if ∃i r max [i] < r min
i then

20 ξM = Λ ; // Loops are not schedulable at all

21 end

22 return ξM ;

The algorithm assumes as input the vector rmin
M

comprising minimum execution rates for a con-

figuration M , the set P = {p1,p2, . . . ,pn } of loop priorities (with
∑n

i pi = 1) provided as a design
parameter depicting the relative importance of the different control loops along with sampling
periods H = {h1, . . . ,hn }, available percentage bandwidth BW and WCETs W = {w1, . . . ,wn } of

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:11

the loops. The algorithm executes an iterative behavior (line 2) everytime doing a rate selection
for each control loop while respecting the minimum rate constraint rmin

M
. It terminates (line 18)

on computing the best possible execution rates (stored in rmax) for the loops while optimizing
bandwidth utilization and control cost.

Lines 3–4: In each iteration of the while loop, we estimate rmax by considering an incre-
ment δi over the minimum execution rate rmin

i (i.e, rmax [i] = rmin
i + δi) of i-th control loop. The

selection of the offset value δi w.r.t. rmin
i is done using the relative priority information while

maintaining the ECU bandwidth constraint, as discussed next. The overall bandwidth constraint
for all the loops is checked by EDF-schedulability [17] analysis. Let τ be the of n periodic con-
trol tasks with implicit-deadlines (i.e. deadline is equal to period) having wi ,hi as the WCET
and period of i-th control loop respectively. A necessary and sufficient condition for τ to be
schedulable on a unit-capacity processor, is U (τ) ≤ 1, where U (τ) is the total bandwidth utiliza-
tion of all the tasks, defined as U (τ) =

∑n
i=1

wi

hi
[2]. In general, with 0 ≤ BW ≤ 1 as the avail-

able percentage ECU bandwidth, all the control loops are schedulable under their respective mini-
mum execution rates if

∑n
i=1 r

min
i

wi

hi
≤ BW . In our attempt of best possible utilization of available

bandwidth, we compute an increment δi over rmin
i for each loop such that δ1

r min
1

: · · · : δn

r min
n
=

p1 : · · · : pn (i.e., in accordance with their relative priority) so that the total bandwidth require-
ment,

∑n
i=1 (rmin

i + δi) wi

hi
, meets the percentage utilization BW , with a relaxation of [2ε, ε], where

0 < ε < 1 is a small constant, i.e., BW − 2ε ≤ ∑n
i=1 (rmin

i + δi) wi

hi
≤ BW − ε . Let δi

δj
=

pi×r min
i

pj×r min
j

= kj,i .

Hence the relative increments to be computed become {kn,1δn , kn,2δn , . . . ,kn,nδn } with kn,n = 1.
Let U =

∑n
i=1 r

min
i

wi

hi
. Incorporating the new quantities, we get BW − 2ε ≤ ∑n

i=1 kn,iδn
wi

hi
+U ≤

BW − ε ⇒ δn ∈ [BW −2ε−U∑n
i=1 kn,i

wi
hi

, BW −ε−U∑n
i=1 kn,i

wi
hi

]. Maximizing δn , we choose, δn =
BW −ε−U∑n
i=1 kn,i

wi
hi

and subse-

quently find δi , i = 1, . . .n − 1 taking constant time for each. Thus this operation of finding the
relative bandwidth increments for n control loops is linear in n.

Lines 5–9: For the configuration M , once a suitable value of rmax is decided as discussed above,
we generate the collection, sopt, of uniform loop execution patterns (the upper mechanical words,
see Section 4.3) for n control loops. The uniform patterns are generated with the respective rate
choices of rmax by setting βi = li× rmax [i]�/li for the i-th control loop. This operation is lin-
ear in n. If sopt is found schedulable, it is set as the compatible loop execution pattern for that
configuration M and the algorithm terminates there (line 8).

Lines 10–22: Otherwise, if the set of cost optimal uniform patterns sopt is not schedulable,
we execute the procedure Find_Best_Match (discussed later) to generate the set s̄ of compatible
combination of loop execution patterns {s1, s2, . . . , sn } that minimally deviates from sopt. In case,
when even such a choice is not found, more relaxation in available bandwidth utilization constraint
is performed by decrementing BW by an amount of ε . rmax is recomputed (in line 3-4) based on
this new value of BW and the process iterates. In the next iteration, with smaller increments of δi

for each control loop, there will be lesser number of control tasks to schedule for all loops inside
the actual available bandwidth (original value of BW). Hence the probability of finding a set of
compatible loop execution patterns will increase. The iterations are tried out until the minimum
execution rates are violated for at least one control loop (i.e., ∃ i such that rmax [i] < rmin

i). The
number of iterations is upper bounded by BW −U

ε
.

Schedulability: The EDF schedulability of the n control loops corresponding to the set,
{s1, . . . , sn }, of loop execution patterns can be determined by preparing the periodic task set from
the loop execution patterns and then performing the standard schedulability test over this task
set. We create a set, Zk , of recurrent tasks for each k-th control loop as follows.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:12 S. Ghosh et al.

Let lk denotes the length of sk ,wk denotes the WCET of loop execution for Γk and,hk denotes the
sampling period for Γk . For each j, 0 ≤ j < lk , if sk [j] is 1, we add the recurrent set of instantiations
of sk [j] intoZk . Formally these are represented by the set of tasks: {〈k,wk ,νi ,νi + hk 〉 |νi = (j + i ×
lk) × hk , i = 0, 1, . . .} where wk is the loop execution time for Γk , νi represents the time at which
the (i + 1)th instance of sk [j] is issued, and νi + hk is the deadline for that instance. It may be
observed that the sequence of tasks issued by the pattern sk is exactly defined by Zk . Therefore,
the loop execution patterns, s1, . . . , sn for n control loops, are schedulable, iff the set of tasks in
Z =
⋃

1≤k≤n Zk are schedulable. Task set generation from a pattern is linear in pattern length.
Find_Best_Match: This procedure is called when the cost optimal uniform patterns for all con-

trol loops sopt is found to be unschedulable (i.e. line 6 returns false). The procedure searches for a
set of compatible loop execution patterns which are minimally nonuniform in terms of distribution
of drops. The procedure is based on the definition of a cost function which serves as a measure
of the uniformity of a given pattern s satisfying execution rate r . For the pattern s of length l , the
drop rate, (1 − r), implies a total of q = (1 − r) × l� number of allowable drops such that on av-
erage there should be one drop in every sequence of m = l/q� consecutive loop executions. The
non-uniformity of drops in an l length pattern s with execution rate r , is defined point wise as
follows. Let penalty (i, s) =min(0, j − 1) if them length cyclic subsequence starting from s[i] has j
number of drops wherem is as defined above. Note that in a perfectly uniform pattern, there will
be exactly one drop in an m length subsequence thus incurring zero penalty. Hence the overall
non-uniformity of s is given by,

COST (s) =
|s |∑

i=1

penalty (i, s)

Incurring zero penalty in all subsequences, the cost function evaluates to zero for the most uniform
pattern (with rate r) and all its cyclic shifts. For defining the EDF-schedulability constraints in the
parlance of the optimization problem our approach is as follows.

Following [2], we define bandwidth requirement, BR (s, t1, t2), of the control tasks initiated
according to the loop execution pattern s , within the finite time interval [t1, t2), as the cu-
mulative execution requirement of those tasks set. For example, let, si = 1011, sj = 1010,wi =

1ms,w j = 2ms,hi = 2ms,hj = 4ms , and both the loops start at t = 0. For the time interval [0, 4),
BR (si , [0, 4)) = 1 and BR (sj , [0, 4)) = 2, while BR (si , [4, 8))=1+1=2 and BR (sj , [4, 8))=0. Therefore

within the time interval [t1, t2), the total bandwidth requirement of all the control tasks initiated
according to {s1, s2 . . . , sn } is,

BR (s1, . . . , sn , [t1, t2)) =
n∑

i=1

BR (si , [t1, t2))

For above example, BR (s1, s2, [0, 4)) = 1 + 2 = 3ms . A sufficient feasibility condition for schedula-
bility of n control loops getting executed according to the loop execution patterns {s1, s2, . . . , sn }
is,

BR (s1, . . . , sn , [t1, t2)) ≤ (t2 − t1), ∀t1, t2 ≤ tB , t1 < t2

where tB = lcm(|s1 | × h1, |s2 | × h2, . . . , |sn | × hn).

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:13

Let N1 (s) denote the number of 1s in the pattern s . Given the length {l1, . . . , ln } and the exe-
cution rates {r1, . . . , rn } for the n loop execution patterns, the problem of finding the schedulable
combination of patterns s̄ = {s1, s2, . . . , sn } with maximum possible uniformity, has the following
Integer Linear Programming (ILP) formulation,

Minimize
n∑

i=1

COST (si)

subject to N1 (si) = li × ri �, ∀i = 1, 2, . . . ,n

BR (s1, . . . , sn , [t1, t2)) ≤ (t2 − t1),∀t1, t2 ≤ tB , t1 < t2

The function Find_Best_Match() formulates and solves this ILP instance and returns the maxi-
mum possible uniform and schedulable combination if any feasible solution exists, else it returns
NULL. The ILP instance contains O (n) number of constraints of typeN1 (si) = li × ri � and O (t2

B)
constraints of type BR (s1, . . . , sn , [t1, t2)) ≤ (t2 − t1).

The methodology for synthesizing a table driven scheduler automaton which safely orchestrates
mode based scheduling of all the control loops is presented in Algorithm 2. The procedure makes
use of Algorithm 1 for computing the compatible loop execution patterns for each configuration.

ALGORITHM 2: Generate Pattern Based Schedule
Input: For all controllers, sampling period: H = {h1, . . . , hn }, minimum execution rates at modes:

{r min
ext,i , r min

nom,i , r min
mr д,i }

n
i=1,WCET: W = {w1, . . . , wn }, length of the patterns: {l1, . . . , ln }, loop

priorities: P = {p1, . . . , pn },% bandwidth utilization: BW

Output: Table driven Scheduler Automaton T

1 rex t ,min = [r min
ext,1, . . . , r min

ext,n], rnom,min= [r min
nom,1, . . . , r min

nom,n], rmr д,min = [r min
mr д,1, . . . , r min

mr д,n];

// Find Optimal pattern for Settled Configuration

2 ξst l =Find_Schedulable_Patterns(rnom,min,P, BW , H, W);

// Pattern is not found for Settled Configuration

3 if ξst l = Λ then

4 T = ϕ ; // The controllers are not schedulable

5 return T;

6 end

// Find schedulable pattern for each Perturbed Configuration Mi

7 for each Mi ⊆ {P1, P2, . . . , Pn } do

8 Compute r min
Mi

; // set minimal execution rates according to mode definitions

9 ξMi =Find_Schedulable_Patterns(r min
Mi

,P, BW , H, W);

// Pattern is not found for this Perturbed Configuration

10 if ξMi = Λ then

11 T[i] = ϕ ;

12 end

// Find compatible bridges between ξMi and ξst l

13 else

14 [List1, List2] = Find_Bridge(ξst l , ξMi) ; // Find bridges between combinations of patterns

15 Inξstl ,ξMi
= List1, Outξstl ,ξMi

= List2;

// Store into the table T

16 cell (ξst l , ξMi) = (ξst l , ξMi , Inξstl ,ξMi
, Outξstl ,ξMi

);

17 T[i] = [cell (ξst l , ξMi)] ;

18 end

19 end

20 return T;

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:14 S. Ghosh et al.

Table 1. System Parameters

Line 1: The vectors rex t ,min , rnom,min and rmr д,min are initialized with the minimum exe-
cution rates of n loops at extemal, nominal and marginal modes respectively. Line 2–6: We first
compute the set of compatible loop execution patterns for the settled configuration and if found
store it in ξstl . Line 7–12: Next we compute the compatible loop execution patterns ξMi

for each
perturbed configuration, Mi ⊆ {P1, P2, . . . , Pn }. For this, first we set the minimal execution rates
in the rate vector rmin

Mi
according to the mode definitions of Mi as described in third paragraph of

Section 4.5. Then Algorithm 1 is invoked for finding the compatible loop execution patterns forMi .
Line 13–19: The procedure Find_Bridge(ξi , ξ j) in line 14, is used to find the bridges between two
compatible combinations of loop execution patterns, ξi and ξ j . It returns the list, List1, containing
all possible bridges from ξi to ξ j and the list, List2, containing the bridges from ξ j to ξi .

The output of Algorithm 2 is a table structure, T, defined as follows. For two compatible com-
binations of loop execution patterns, ξi and ξ j , for two configurations, we define two list struc-
tures, Inξi ,ξ j

and Outξ j ,ξi
. The list Inξi ,ξ j

is used to store the possible bridges from ξi to ξ j , and
the list Outξ j ,ξi

is used to store the possible bridges from ξ j to ξi . We also define a cell structure

as cell (ξi , ξ j) � (ξi , ξ j , Inξi ,ξ j
,Outξ j ,ξi

) to store the compatible loop execution patterns ξi and ξ j

together with their bridging information. Finally, we define our scheduler automaton as a one
dimensional list of N = 2n − 1 cells,

T[1, . . .N] � [cell (ξstl , ξM1), cell (ξstl , ξM2), . . . , cell (ξstl , ξMN
)]

The for loop in line 7 iterates 2n − 1 times, where each iteration is dominated by the complex-
ity of Find_Schedulable_Patterns. The procedure Find_Bridge takes O (nl) times to find the
bridges between the patterns in ξstl and ξMi

, where l is the pattern length.

5 CASE STUDIES AND RESULTS

In this section we illustrate our results with an automotive case study comprising a cruise control
system (CC), a car suspension control system (SC), and a DC motor speed control (MS) system.
The plant models for CC, SC and MS are taken from [21]. We also provide results on a standard
control theoretic case study consists of two independent instances of double integrator circuits.
Our choice of the various plant parameters are shown in Table 1. Given these parameter choices,
we find suitable values of the constants (m1,m2) using the method outlined in Section 4.1. In each
case study, we synthesize LQR based controllers and consider scheduling the control loops on
single ECUs. All the simulations have been performed using MATLAB version R2015b, running
on 64-bit Ubuntu 14.04 in a 3.10 GHz Intel Core-i5 machine with 4 GB of memory. The ILP problem
has been solved using the MATLAB built-in function intlinprog.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:15

5.1 Case Study 1: Automotive Examples

The linearized third order CC system regulates the vehicle speed at a reference level by adjusting
the engine throttle angle, the control input u. The dynamic matrices are as follows,

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−6.0476 −5.2856 −0.238

⎤⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎣

0
0
2.4767

⎤⎥⎥⎥⎥⎥⎦ , C = [1 0 0]

The SC system has four state variables representing the position, velocity of the car and position,
velocity of the suspension mass respectively. The control input is the force applied to the body by
the suspension system. The dynamic matrices for this system are,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0
80
20
−1120

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C = [1 0 0 0]

The second order MS system controls the rotational speed of the motor by adjusting the motor
terminal voltage. The state variables represent the rotational speed and the armature current re-
spectively. The dynamic matrices are,

A =

[
−10 1
−0.02 −2

]
, B =

[
0
2

]
, C = [1 0]

For CC, the desired speed limit is considered as 30 km/hr, i.e., χ1 = 30. We set the disturbance
threshold η1 to the speed limit of 50 km/hr. The damping factors, ϵnom,1 and ϵmrд,1 are determined
for the nominal range of disturbance, (χ1,η1], using the method outlined in Section 4.1. Similarly,
the damping factor, ϵext,1 is computed for the extremal disturbance range (η1, χ1 + dmax,1],
where dmax,1 is the maximum disturbance level for which we guarantee the desired settling
time STdsr,1. The value of dmax,1 is chosen such that χ1 + dmax,1 = 160km/hr. For each
of (l1, ϵext,1), (l1, ϵnom,1) and (l1, ϵmrд,1) we calculate the corresponding minimum execution
rates rmin

ext,1 = 0.66, rmin
nom,1 = 0.55 and rmin

mrд,1 = 0.5 for extremal, nominal and marginal mode
respectively using the method discussed in Section 4.2. Similarly, for SC, we find the minimum
execution rates for all these three modes depending on the reference value of the car position
as χ2 = 0.02 m, disturbance threshold of η2 = 0.5 m and dmax,1 = 4.98. For MS, we calculate the
minimum execution rates for the modes corresponding to the reference value of rotational speed
as χ3 = 0.5 rad/sec, disturbance threshold as η3 = 1 rad/sec and dmax,1 = 4.5.

With these design criteria, we apply Algorithm 2 to generate the table driven scheduler automa-
tion. It first computes the optimal compatible loop execution patterns ξstl for the settled configu-
ration and then ξi for the different perturbed configurations Mi ⊆ {P1, P2, P3}. The execution time
and other relevant statistical outputs obtained from Algorithm 2 are reported in Table 2. First row
of Table 2 shows the output for settled configuration (null set denoting absence of disturbance in
all plants) while rest of the rows reflect the same for different perturbed configurations. Column 2
shows the minimum execution rates, rmin

M1
, of the plants, needed for that configuration M . For all

these cases, the maximum possible execution rates, rmax as derived using Algorithm 2 is shown in
Column 3. The % bandwidth utilization obtained by executing the control loops according to rmax

is reported in Column 4. Since the complexity of Algorithm 2 is mainly dominated by Algorithm 1
for generating the loop execution patterns, we report the time taken by Algorithm 1 separately for
each configuration in Column 5. Note that, for the perturbed configuration M = {P1}, i.e., when
CC experiences the disturbance, the maximum execution rate, rmax [1], for it has been increased

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:16 S. Ghosh et al.

Table 2. Results for Various Configurations - Case Study 1

M rmin
M

rmax Max. Util. Time (sec)

Λ [0.55 0.6, 0.53] [0.6, 0.64, 0.55] 80.6% 5.4
{P1} [0.66 0.53, 0.5] [0.77, 0.6, 0.53] 89.5% 3.15
{P2} [0.5, 0.69, 0.5] [0.5, 0.7, 0.5] 76.6% 5.33
{P3} [0.5, 0.532, 0.6] [0.6, 0.61, 0.71] 82.3% 5.99
{P1, P3} [0.66, 0.532, 0.62] [0.8,0.58,0.70] 93.3% 2.13
{P2, P3} [0.5, 0.69, 0.6] [0.51, 0.7, 0.63] 79.4% 3.42
{P1, P2} [0.66 , 0.69, 0.5] Not Schedulable – 4.38
{P1, P2, P3} [0.66 , 0.69, 0.6] Not Schedulable – 4.02

to 0.77 (see Row-2,Col-3) from the value it had in settled configuration, i.e, 0.6 (see Row-1,Col-3).
For the perturbed configurations {P1, P2} and {P1, P2, P3} no schedulable solution is found.

The performance of the adaptive schedules obtained by Algorithm 2 is described next. Here we
mainly discuss the situation when disturbance comes into the system CC only. We run a simulation
of 20 sec. We generate five periodic disturbance signals, essentially spikes arriving with period of
2 sec having peak amplitudes value {60, 70, 85, 95, 110} km/hr respectively. Each of these distur-
bance signals perturbs x1 (vehicle speed) from its desired value χ1 = 30. Superimposed with it, we
consider the Gaussian state noise with a covariance R = 500 × (BB′). Figure 2 shows the output
responses of the plants in the presence and absence of adaptive sharing of bandwidths, when CC is
affected by the disturbance signal with peak amplitude of 60. The output response curves of all the
plants in the non-adaptive case when all controllers execute the same loop execution patterns re-
gardless of the disturbances, are marked by blue color. The response plots in red are for the adaptive
case. The benefit of the adaptive approach can be appreciated by comparing the damping curve of
the plants, specially for cruise control, in situations when it gets affected by the disturbance signal
as shown in Figure 2(a). In this case, Algorithm 2 finds the optimal cost uniform pattern (sopt in line
6 of Algorithm 1) to be schedulable thus resulting in nice damping behavior for the extremal mode
of CC. For SC and MS only Gaussian state noise have been injected without any disturbance spikes.
Since SC is a dynamically faster plant w.r.t. MS we find the response to be more noisy. When CC
shifts to the extremal mode, SC and MS shift to marginal mode schedules as dictated by the table
driven scheduler. Note that for both MS and SC, the adaptive case performs almost similar to non-
adaptive one (see Figure 2(b) and Figure 2(c)) since the marginal mode patterns for them generated
by Algorithm 2 have execution rates rmax very near to that of respective nominal modes.

The choice of the disturbance threshold separating nominal and high disturbance levels is an
important design parameter. A high threshold restricts frequent transitions to the extremal modes,
thereby curtailing the potential benefits of adaptive scheduling. A low threshold may have the side
effect of relegating some controllers to their marginal modes, possibly leading to overall degrada-
tion in control performance. In order to analyze the effect of such thresholds on overall utilization
and control performance, we have synthesized the table driven schedulers assuming four differ-
ent choices of the disturbance threshold η1, namely, the speed limit of {50, 70, 80, 90} km/hr. In all
cases, we run the simulation for 20 sec and calculate the percentage gain for the adaptive setting
over and above the non-adaptive case using %Gain = CN A−CA

CN A
whereCN A andCA are the quadratic

costs of the non-adaptive and adaptive scheduling schemes computed as follows.
Note that in the settled configuration our adaptive and non-adaptive set of schedules are exactly

same. The benefit of adaptive scheduling is manifested in the perturbed configuration. It is there-
fore well justified to evaluate the control cost over the windows of time when high disturbance is

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:17

Fig. 2. Adaptive vs. Non-Adaptive for M1 = {P1}.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:18 S. Ghosh et al.

Fig. 3. Improvement in Control Cost.

experienced in one or more plants until the time when the system returns to the settled configu-
ration. In our setup, such windows are observed to be of length 50 consecutive sampling periods.
Inside the simulation horizon, we compute CN A as well as CA by accumulating the quadratic cost
for such windows over 50 sampling periods starting from the time instances when disturbance is
sensed. Figure 3 shows the percentage gain in quadratic cost when we choose the adaptive ap-
proach over the non-adaptive one. Each such curve shows the percentage gains under the five
different disturbance signals having peak amplitudes {60, 70, 85, 95, 110} as discussed earlier.

The key observations from these curves are:

(1) Lower disturbance thresholds allow more adaptive scheduling and increase the gain in
control performance.

(2) For a given choice of the disturbance threshold the percentage gain increases with am-
plitude of disturbance encountered, but this gain seems to saturate for higher amplitude
disturbances.

We have considered the sampling periods for CC, SC and MS to be 40 ms, 20 ms and 100 ms re-
spectively. If we consider our scheme for adaptive scheduling but in a multi rate settings like [5,
7] without the generalization of recurrent patterns, then the choice of sampling periods for the
nominal modes become 60 ms, 30 ms and 100 ms respectively. This is because we are now consid-
ering only ‘all 1’ patterns due to which the former choice of periods remain unschedulable inside
identical bandwidth budget. Faced with a disturbance scenario, the controller for CC jumps to the
sampling period of 40 ms (extremal mode), whereas for compensation SC and MS relinquishes
their bandwidth by changing their periods to 50 ms and 120 ms respectively. With η = 50, we run
the simulation and compute the control cost under afore mentioned five disturbance signals (as
in Figure 3) and identical simulation settings. Across different disturbance scenarios, the %Gain in
terms of control cost for our scheme is 20% to 35% w.r.t. the multi-rate setting. This is because, in
our scheme, the choice of sampling periods remain same across modes and thus it less increases
the overall convex quadratic cost [5, 7] as compared to the multi rate setting.

5.2 Case Study 2: Double Integrator Circuits

We consider two independent instances of double integrator plants with the following discrete
time dynamics,

xp[t + 1] =

[
1 0
−1 1

]
xp[t] +

[
−1
0.5

]
u[t]

y[t] = [0 1] xp[t]

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:19

Table 3. Results for Various Configurations - Case Study 2

M rmin
M

rmax Max. Util. Time (sec)

Λ [0.587 0.573] [0.642, 0.70] 75.9% 4.67
{P1} [0.692 0.502] [0.77, 0.57] 78.4% 3.15
{P2} [0.519, 0.687] [0.56, 0.849] 82.6% 3.06
{P1, P2} [0.692 , 0.687] Not Schedulable – 5.14

For these double integrator plants, the desired operating regions are considered as spheres with
radius χ1 = χ2 = 0.05V . We set the disturbance threshold ηi to 0.5V , dmax,i to 5.45V , i = 1, 2 and
based on it we compute the minimum execution rates for all the operating modes. Using this de-
sign criteria, Algorithm 2 generates the scheduler automaton and others relevant data which are
reported in Table 3. To evaluate the performance of the adaptive approach we run a simulation of
10 sec where we consider five periodic disturbance signals with period of 2 sec , and peak ampli-
tudes of {1.2V , 2.2V , 3.2V , 4.2V , 5.2V } respectively together with a Gaussian state noise having a
covariance R = 0.005 ∗ (BB′). Figure 4 shows the output responses of the plants for the perturbed
configuration M2 = {P2}. The benefit of the adaptive approach is clearly understandable specially
by comparing the damping curves of second plant. For this system, we computed the control cost
for the six different disturbance signals and disturbance thresholds {0.5V , 1V , 1.5V , 2V , 2.5V , 3V }.
When compared to non-adaptive scheduling (similar to case study 1), the percentage gain was
found to be the range [16-50]%.

6 RELATED WORK AND DISCUSSIONS

Adaptive control design and application of adaptive control techniques to control architecture
co-design and scheduling is a well established field of research. The notion of adaptiveness is
primarily implemented using two approaches. One approach is to adaptively alter the sampling
rate of controllers in order to improve upon control performance and robustness metrics as de-
manded by the environment [5–7, 22]. The second approach emphasizes on striving to improve
performance metrics by adaptively altering the control law so that any extra bandwidth available
at the runtime can be used for computing a better control actuation [9, 10, 13].

The approach of [6, 7] is to activate an outer feedback scheduling loop after a pre-specified
interval (the feedback scheduling period), observe the current plant state, estimate the noise, and
assign sampling rates to each control loop so that the total control cost is optimized over the
feedback scheduling period. While the objective is similar in the present work, i.e. to retain control
performance under plant disturbances, our solution method does not change sampling periods as
done in [6, 7]. Instead, for the disturbed plants, our offline scheduler switches to loop execution
patterns which reject the disturbance more efficiently. Our method has two benefits, a) one need
not assume that a control loop can choose from a continuum of sampling periods, which is often
not realistic due to restrictions imposed by underlying execution platform, b) the cost of online
optimal sampling period computation is done away with thus trading off cost optimality in favor
of offline design of low-overhead schedulers.

Another direction of adaptive regulation of sampling rates proposed in [1, 24] where the authors
show that for switched systems, the set of infinite schedules that guarantee (l , ϵ)-exponential sta-
bility are ω-regular languages defined over the alphabet of closed loop dynamic matrices. The
work reported in [24] also outlines a method for construction of finite state automaton of such
languages. However, from a practical perspective, it is not easy to use the generalized automaton
prescribed in [24] for several reasons: (1) The size of the automaton grows exponentially with l .

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:20 S. Ghosh et al.

Fig. 4. Adaptive vs. Non-Adaptive (Double Integrator).

For large values of l , the automaton will occupy a significant volume of space which is typically
not healthy for an embedded scheduler, (2) though all runs guarantee stability, the control cost (as
explained later) is not the same in all runs. In fact, we aim to improve the quality of control by
switching to a more appropriate loop execution pattern in the face of a disturbance, (3) for adaptive
sharing of ECU bandwidth between controllers, we need to examine the trade-off between control
cost and the number of loop executions and choose the appropriate runs.

An earlier effort by [18], addresses the problem of dynamic sampling period assignment for
handling the reduction of bandwidth due to transient overloads in real time systems. Essentially,
they build on the idea of design time schedulable period assignment proposed in [12]. Design
methods for control implementations which are robust against irregularities like packet dropout
have been reported in [16, 19, 23]. Our idea of loop execution patterns is a formalization of finite
length recurrent actuation patterns where we apply it in the context of offline scheduler synthesis
for switching among such patterns and the switching is triggered by disturbance levels while
ensuring schedulability and stability.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

A Structured Methodology for Pattern based Adaptive Scheduling in Embedded Control 189:21

7 CONCLUSION AND FUTURE WORK

Adaptive sharing of ECU bandwidth among controllers is an ambitious as well as desirable objec-
tive of control. The benefits of such sharing has been demonstrated by many researchers, but the
gap between the control theoretic proofs of concept and the intricacies of mapping the approach
to an execution environment has been prominent. Since the approach also marries the ECU band-
width with the choice of sampling modes, the proposed approach can also be used for choosing
platform parameters, such as ECU speed. This direction of research may also yield optimizations
in terms of platform dependent attributes such as power. Also as a matter of fact, extending the
notion of perturbed global configurations as defined in the present work to a soft real-time set-
ting and admitting deadline misses in a stochastic manner can be an interesting extension of the
present work.

REFERENCES

[1] Rajeev Alur and Gera Weiss. 2008. Regular specifications of resource requirements for embedded control software.
In Proc. RTAS. 159–168.

[2] Sanjoy Baruah and Joël Goossens. 2004. Scheduling real-time tasks: Algorithms and complexity. Handbook of Sched-

uling: Algorithms, Models, and Performance Analysis 3 (2004).
[3] Michael S. Branicky, Stephen M. Phillips, and Wei Zhang. 2002. Scheduling and feedback co-design for networked

control systems. In Proc. CDC, Vol. 2. 1211–1217.
[4] Rosa Castané et al. 2006. Resource management for control tasks based on the transient dynamics of closed-loop

systems. In Proc. ECRTS. 10–pp.
[5] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Årzén. 2002. Feedback feedforward scheduling of control

tasks. Real-Time Systems 23, 1–2 (2002), 25–53.
[6] Anton Cervin, Manel Velasco, et al. 2009. Optimal on-line sampling period assignment. Dept. Autom. Control, Tech.

Univ. Catalonia, Barcelona, Spain, Tech. Rep. ESAII-RR-09-04 (2009).
[7] Anton Cervin, Manel Velasco, Pau Martí, and Antonio Camacho. 2011. Optimal online sampling period assignment:

theory and experiments. IEEE Trans. on Control Systems Technology 19, 4 (2011), 902–910.
[8] Christian Choffrut and Juhani Karhumäki. 1997. Combinatorics of words, Handbook of formal languages. (1997).
[9] Daniele Fontanelli, Luca Greco, and Luigi Palopoli. 2013. Soft real-time scheduling for embedded control systems.

Automatica 49, 8 (2013), 2330–2338.
[10] Daniele Fontantelli, Luigi Palopoli, and Luca Greco. 2013. Optimal CPU allocation to a set of control tasks with soft

real time execution constraints. In Proc. Hybrid Systems: Computation and Control. 233–242.
[11] Simon Fürst and AUTOSAR Spokesperson. 2015. Autosar the next generation–the adaptive platform. CARS@

EDCC2015 (2015).
[12] MEM Ben Gaid, Arben Cela, Yskandar Hamam, and Cosmin Ionete. 2006. Optimal scheduling of control tasks with

state feedback resource allocation. In 2006 American Control Conference. 6–pp.
[13] Vijay Gupta. 2010. On a control algorithm for time-varying processor availability. In Proc. HSCC. 81–90.
[14] Arash Hassibi et al. 1999. Control of asynchronous dynamical systems with rate constraints on events. In Proc. CDC,

Vol. 2. 1345–1351.
[15] Dan Henriksson and Anton Cervin. 2005. Optimal on-line sampling period assignment for real-time control tasks

based on plant state information. In Proc. CDC. 4469–4474.
[16] Qiang Ling and Michael D. Lemmon. 2002. Robust performance of soft real-time networked control systems with

data dropouts. In Proc. CDC, Vol. 2. 1225–1230.
[17] Chung Laung Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM 20, 1 (1973), 46–61.
[18] Patrizia Marti et al. 2009. Draco: Efficient resource management for resource-constrained control tasks. IEEE Trans.

Comput. 58, 1 (2009), 90–105.
[19] Johan Nilsson, Bo Bernhardsson, et al. 1996. Analysis of real-time control systems with time delays. In Proc. CDC,

Vol. 3. 3173–3172.
[20] Jia Ning, Song YeQiong, and Simonot-Lion Francoise. 2007. Graceful degradation of the quality of control through

data drop policy. In Proc. ECC. 4324–4331.
[21] Debayan Roy et al. 2016. Multi-objective co-optimization of FlexRay-based distributed control systems. In Proc. RTAS.

1–12.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

189:22 S. Ghosh et al.

[22] Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G. Shin. 1996. On task schedulability in real-time control systems.
In Proc. RTSS. 13–21.

[23] Damoon Soudbakhsh, Linh T.X. Phan, et al. 2013. Co-design of control and platform with dropped signals. In Proc.

ICCPS. 129–140.
[24] Gera Weiss and Rajeev Alur. 2007. Automata based interfaces for control and scheduling. In Proc. HSCC. 601–613.
[25] Wei Zhang, Michael S. Branicky, and Stephen M. Phillips. 2001. Stability of networked control systems. IEEE Control

Systems 21, 1 (2001), 84–99.

Received April 2017; revised June 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 189. Publication date: September 2017.

